		Production Engineering		
		Second Year (Third Semester)		
SI.No	Course Code	Subject (Theory)	Contact Hrs. L-T-P	Credit
1	MA1201	Mathematics-III	3-0-0	3
2	PE1201	Professional Core-1: Thermal and Fluids Engineering	3-0-0	3
3	PE1202	Professional Core-2: Materials Engineering & Metallurgy	3-0-0	3
4	PE1203	Professional Core-3: Mechanics of Materials	3-0-0	3
5	CS1204	Advanced Competency Course-1: Programming in Python (PC-4)	3-0-0	2
6	HS1202	Organizational Behaviour	3-0-0	2
		Subject (Sessional)		
7	PE1281	Thermal and Fluid Engineering Lab	0-0-3	1.5
8	PE1282	Material Testing Lab	0-0-3	1.5
9	PE1283	Computer Aided Machine Drawing	0-0-3	1.5
10	CS1284	Programming in Python Lab	0-0-3	1.5
		Tota	18-0-12	22
		Second Year (Fourth Semester)		
			Contact	
SI.No	Course Code	Subject (Theory)	Hrs.	Credit
			L-T-P	
1	PE1204	Professional Core-5: Theory of Metal Cutting	3-0-0	3
2	PE1205	Professional Core-6: Theory of Machine	3-0-0	3
3	PE1206	Professional Core-7: Inspection & Metrology	3-0-0	3
4	PE1207	Professional Core-8: Manufacturing Technology-I	3-0-0	3
5	CS1209	Advanced Competency Course-2: Artificial Intelligence and Machine Learning (PC-9)	3-0-0	2
6	HS1201	Engineering Economics	3-0-0	2
		Subject (Sessional)		
7	PE1284	Metal Cutting Lab	0-0-3	1.5
8	PE1285	Machine Dynamics Lab	0-0-3	1.5
9	PE1286	Metrology Lab	0-0-3	1.5
10	PE1287	Production Practice Lab-I (casing, welding etc.)	0-0-3	1.5
		Summer Internship and Research Experience (SIRE- I) *		
		Tota	18-0-12	22

	PRODUCTION ENGINEERING		
ubject Code	MA1201	Total Contact Hour	30
emester	3rd	Total Credit	3
ubject Name	Mathematics-III		
	SYLLABUS		
Module-I	Random variables (Discrete and Continuous. Cumulative Distribution Function (CDF). Variance and standard deviation. Moments. Functions of a random variable. Distributions: Binomial, Poisson, normal, Gaussian, uniform (definitions and examples only). Moment generating function.		6 Hrs
Module-II	Pairs of random variables. Joint probability density function. Joint probability mass function. Marginal distribution. Functions of two random variables, PDF and expected values of the sum of two random variables		6 Hrs
Module-III	Probability Models of n Random Variables. Vector notation. Independence of random variables and random vector vectors. Expected value vector and correlation matrix.	s. Functions of random	6 Hrs
Module-IV	Stochastic Processes. Definitions and examples. Types of stochastic processes. Random variables from random pro process.	cesses. The Poisson	6 Hrs
Module-V	Markov Chains. Discrete-time Markov chain. Discrete-Time Markov chain dynamics. Limiting state probabilities for State classification.	or a finite Markov chain.	6 Hrs
Essential Reading	 Roy D. Yates, Rutgers and David J. Goodman, Stochastic Processes, 2d Edition, John Wiley and Sons, INC. Gregory F Lawler, Introduction to Stochastic Processe, Chapman & Hall/ CRC Press (Taylor Francis Group). 		
Course Outcomes	The objective of this course is to familiarize the prospective engineers with techniques in Probability and Statistics. advanced level of Statistics that would be essential for Engineering disciplines. CO1. To apply different distributions in real life problems of industries CO2. To deal with problems that contains multivariable probability distribution. knowledge Probability Models of multi-Random Variables CO4. To learn use of stochastic processes in daily life		to deal with 03.To enrich
		I I	
ubject Code	PE1201	Total Contact Hour	30
	2 rd	Total Credit	3
emester	5 Thermal & Fluids Engineering	Total Credit	3
ubject Name ourse Objective	To obtain knowledge on the basic concepts of thermal and fluids engineering		
ourse Objective			
	SYLLABUS		
Module-I	Basic Concepts: Thermodynamic systems and surrounding, state properties, processes and cycles. Thermodynamic work transfer across boundaries, Quasi-static processes. Zeroth &First Law of Thermodynamics: First law for a clo cycle and undergoing a change of state. Internal energy as a system properties. Application of first law to different to processes.	sed system undergoing a	7 Hrs
Module-II	Second Law of Thermodynamics: Reversible and irreversible processes. Refrigerator and heat pump. Equivalence of Kelvin-Plank and Clausis statements, Carnot theorem and its efficiency. Inequality of Clasius and entropy concept. Change of entropy for various thermodynamic processes. Air Standard Cycle: Otto, diesel and dual cycles, Heat transfer – basic of conduction, convection and radiation.Heat transfer concepts & applications.		6 Hrs
Module-III	Introduction: Physical properties of fluids, Density, Specific weight, Specific volume, Specific gravity, Compressibility, Elasticity, Surface tension, Capillarity, Vapour pressure, Viscosity, Ideal and real fluids, Concept of shear stress, Newtonian and Non Newtonian Fluids.		6 Hrs
Module-IV	Fluid Statics: Pressure-Density-Height relationship, Manometers, Pressure on plane and curved surface, Centre of pressure, Buoyancy, Stability of immersed and floating bodies, Fluid masses subjected to uniform acceleration, Free and Forced vortex.		5 Hrs
Module-V	Fluid Dynamics: Basic Equations - equation of continuity, One-dimensional Euler's equations of motion and its integration to obtain Bernoulli's equation and Momentum equation. Dimensional Analysis and Principles of Model Testing: Dimensional homogeneity, Dimensional analysis, Rayleigh's method and Buckingham Theorem. Similarity laws and model studies. Distorted models.		6 Hrs
Essential Reading	 Engineering Thermodynamics by P. K. Nag, TMH Fluid Mechanics & Hydraulics Machines –By: Modi and Seth, Standard Book House, New Delhi 		
Supplementary Reading	 Thermodynamics, An Engineering Approach by Cengel and Boles. Publisher: McGrawHill Introduction to Fluid Mechanics by Fox & McDonald, Willey Publisher. 		
Course Outcomes	At the end of the course, the student will able to: CO1. Demonstrate the basic concepts, zeroth and first law of thermodynamics. CO2.Demonstrate the second law of thermodynamics, air standard cycles and basic heat transfer. CO3. Identify importance of various fluid properties at rest and in motion and express the principles of continuity, motions. CO4. Demonstrate fluid statics principles on various surfaces. CO5.Apply dimensional analysis and model testing to predict physical parameters that influence the flow in fluid n		pplied to flui
ubject Code	PE1202	Total Contact Hours	30
ubject Code	PE1202 3 rd	Total Contact Hour	30
emester		Total Credit	3
ubject Name	Materials Engineering & Metallurgy		
Course Objective	To obtain domain knowledge on material characteristics Introduction to materials- Metal and alloys, ceramics, polymers and semiconducting materials—introduction and approximately and alloys and semiconducting materials.	oplication as engineering	10 Hrs

Module-II			
	Equilibrium Diagrams: Experimental methods for construction of equilibrium diagrams, Isomorphous alloy system, determination of the size of critical nucleus, equilibrium cooling and heating of alloys, lever rule, coring, miscibility reactions.		08 Hrs
Module-III	Transformation in solid state, allotropy, order-disorder transformation, eutectoid, peritectoid reaction and complex phase diagrams, relation between equilibrium diagrams and physical properties of alloys. Study of important binary phase diagrams Fe-Fe3C. Phase transformations in steels pearlitic, martensitic and bainitic transformations cooling eurves. Isothermal transformation diagrams, transformations on continuous cooling.		
Module-IV	Heat treatment- Iron-carbon system. Annealing, normalizing, hardening, critical cooling rate, hardenability, age hardening, surface 05 Hrs		05 Hrs
Module-V	High temperature materials, materials for cryogenic application, thermally insulating materials, smart materials, Stee Stainless Steel and Tool Steels.	els: High Speed Steel,	05 HrS
Essential Reading	 Introduction to Physical Metallurgy – S.H. Avner, TMH. Material Science and Engineering- V.Raghavan, PHI. 		
Supplementary Reading	1. Material Science and Engineering: An Introduction- W.D.Callister, Wiley. 2. Physical Metallurgy - V. Raghavan, PHI.		
Course Outcomes	At the end of this course, students will able to CO1. Relate the processing-structure-property-performance of various materials. CO2. Interpret different equilibrium diagrams with various transformation phases. CO3. Make use of iron- carbon equilibrium diagram. CO4. Analyze heat treatments techniques and their effects in the engineering materials. CO5. Decide materials for various applications and beyond room temperature application.		
	BE1464		20
ubject Code	PE1203	Total Contact Hour	30
emester	3 rd	Total Credit	3
ubject Name	Mechanics of Materials		
re-requisites	Engineering Mechanics		
Course Objective	To provide basic knowledge in mechanics of materials to enable the students to solve real engineering problems and specific materials under different kinds of loadings.	l design engineering syster	nswith some
	SYLLABUS		Contact Hour
	STEEADOS		Contact Hour
1odule-I	Simple Stress and Strain: Stress, strain, elastic constants, and their relationship;temperature stresses, statically indeterminate problems Compound Stress and Strain: Material subjected to biaxial state of stress, Principal Planes, Principal stress, Graphical solution (Mohr's stress circle), Strain measurement and analysis, Principal stresses from principal strains		10 Hrs
Module-II	Shear force and bending moment: Statically determinate beams, Relationship between bending moment and shear for bending moment diagrams for statically determinate beams.	orce, shear force and	05 Hrs
Module-III	Simple bending of beams: Theory of simple bending of initially straight beams, Bending of Composite or Flitched Beams, Shearing stress distribution in typical cross-sections of beams, Torsion: Torsion of solid and hollow circular shafts, combined bending, and torsion.		06 Hrs
Module-IV	Deflection of Beams: Slope and deflection of beams by double integration method and Macaulay's method. Thin cylinders: Cylindrical Vessel with Hemispherical Ends, Longitudinal or axial stress, Circumferential or hoop stress.		05 Hrs
Module-V	Buckling of columns: Euler's theory for initially straight columns with various end conditions. Theories of failure: Maximum Principal Stress Theory, Maximum Shear Stress Theory, Maximum Principal Strain Theory, Maximum Strain Energy Theory and Maximum Distortion Energy Theory		04 Hrs
Essential Reading	1. Strength of Materials- G.H.Ryder, Macmillan India 2. Strength of Materials- S.S. Rattan, TMH Publications.		
	1 Machania af Mataniala D.C. Uikhalan Daaman		
Supplementary Reading	 Mechanics of Materials- R.C. Hibbeler, Pearson. Mechanics of Materials-I- E.J. Herri; Paragaman. Strength of Materials by R. Subramanian, Oxford Univ. Press 		
Reading	2. Mechanics of Materials-I- E.J. Hern; Paragaman.	f circular solid and hollov es in cylindrical vessel wi	th hemispherica
Reading	 Mechanics of Materials-I- E.J. Hern; Paragaman. Strength of Materials by R. Subramanian, Oxford Univ. Press At the end of this course, students will demonstrate the ability to:- CO1. Understand and apply the concept of stress and strain to solve engineering problems analytically and graphica CO2. Construct shear force and bending moment diagrams for statically determinate beams. CO3. Analyze problems of simple bending in initially straight beams/composite beams and determine the strength c combined bending, and torsion. CO4. Calculate the slope and deflection of beams by double integration and Macaulay's method and interpret stress ends. CO5.Determine the buckling load in columns with various end conditions and apply the concept of theories of elast 	f circular solid and hollov es in cylindrical vessel wi	th hemispherica
Course Outcomes	 Mechanics of Materials-I- E.J. Hern; Paragaman. Strength of Materials by R. Subramanian, Oxford Univ. Press At the end of this course, students will demonstrate the ability to:- CO1. Understand and apply the concept of stress and strain to solve engineering problems analytically and graphica CO2. Construct shear force and bending moment diagrams for statically determinate beams. CO3. Analyze problems of simple bending in initially straight beams/composite beams and determine the strength c combined bending, and torsion. CO4. Calculate the slope and deflection of beams by double integration and Macaulay's method and interpret stress ends. CO5.Determine the buckling load in columns with various end conditions and apply the concept of theories of elast 	f circular solid and hollov es in cylindrical vessel wi ic failure for structural des Total Contact Hour	th hemispherica ign under 30
Course Outcomes	 Mechanics of Materials-I- E.J. Herri; Paragaman. Strength of Materials by R. Subramanian, Oxford Univ. Press At the end of this course, students will demonstrate the ability to:- CO1. Understand and apply the concept of stress and strain to solve engineering problems analytically and graphica CO2. Construct shear force and bending moment diagrams for statically determinate beams. CO3. Analyze problems of simple bending in initially straight beams/composite beams and determine the strength of combined bending, and torsion. CO4. Calculate the slope and deflection of beams by double integration and Macaulay's method and interpret stress ends. CO5.Determine the buckling load in columns with various end conditions and apply the concept of theories of elast combined conditions of applied stress. 	f circular solid and hollov es in cylindrical vessel wi ic failure for structural des	th hemispherica
Course Outcomes	 2. Mechanics of Materials-I- E.J. Herri; Paragaman. 3. Strength of Materials by R. Subramanian, Oxford Univ. Press At the end of this course, students will demonstrate the ability to:- CO1. Understand and apply the concept of stress and strain to solve engineering problems analytically and graphica CO2. Construct shear force and bending moment diagrams for statically determinate beams. CO3. Analyze problems of simple bending in initially straight beams/composite beams and determine the strength of combined bending, and torsion. CO4. Calculate the slope and deflection of beams by double integration and Macaulay's method and interpret stress ends. CO5. Determine the buckling load in columns with various end conditions and apply the concept of theories of elast combined conditions of applied stress. 	f circular solid and hollov es in cylindrical vessel wi ic failure for structural des Total Contact Hour	th hemispherica ign under 30
	 2. Mechanics of Materials-I- E.J. Herri; Paragaman. 3. Strength of Materials by R. Subramanian, Oxford Univ. Press At the end of this course, students will demonstrate the ability to:- CO1. Understand and apply the concept of stress and strain to solve engineering problems analytically and graphica CO2. Construct shear force and bending moment diagrams for statically determinate beams. CO3. Analyze problems of simple bending in initially straight beams/composite beams and determine the strength of combined bending, and torsion. CO4. Calculate the slope and deflection of beams by double integration and Macaulay's method and interpret stress ends. CO5.Determine the buckling load in columns with various end conditions and apply the concept of theories of elast combined conditions of applied stress. 	f circular solid and hollov es in cylindrical vessel wi ic failure for structural des Total Contact Hour	th hemispherica ign under 30

Module-I	Beginning Python Basics: Introduction to Python Features of Python, Application of Python Data Types, Keywords, Identifiers, Literals, Constants. Python Indentation. Operators and expressions. Naming Conventions with examples, Managing Input and Output, Concept of Indentation. Conditional statement, Looping statements, break and continue, pass & return statements, Nesting of loops.	6 Hrs
Module-II	Modules: Built-in Modules, Import statement, Packages, Date and Time Modules. Array and its operations, Handling Strings and Characters, List: slicing, bound, cloning, nested list, list and methods, Adding Element: append, extend, count, index and insert). Mutability: Sort, reverse, remove, clear and pop. Map, Filter.	
Module-III	Tuple and methods, Sets and methods, Dictionary: Basic operation, iterator and methods. Function: Introduction to Functions, passing arguments, Anonymous functions (Lambda Function), Recursive Functions.	6 Hrs
Module-IV	Object Oriented Programming: Classes and Objects, Class methods. Encapsulation, Data Abstraction, Constructor, Destructor and Inheritance. Exception Handling: Handling Exceptions: try-except, try-finally	6 Hrs
Module-V	Strings and Regular Expressions : Methods of String Objects, Escape Sequence, Iterating Strings, String Module, String Formatting, Regular Expressions: Re-Module. File Handling: Introduction to File Handling, File Operations, Directories.	4 Hrs
Essential Reading	1. Python Programming for Beginners by Adam Stewart 2. Python Cookbook by David Beazley and Brian K. Jones	
Supplementary Reading	 Introduction to Python Programming By Gowrishankar S. Veena A Python Programming: Using Problem Solving Approach, Oxford University Press by Reema Thareja Python Programming University Press by Ch Satyanarayan, M Radhika, B N Jagadesh 	
Course Outcomes	CO1: Understand the Python Language and its features. CO2: Apply sequence data and control statements to solve problem CO3: Able to create user defined functions to solve problems. CO4: Analyze the concept of OOPs and its implementation. CO5: Create the python program using strings and files.	
Subject Code Semester	HS1202 Total Contact Hour 3rd Total Credit	30
Subject Name	Organizational Behaviour	2
Course Objective	3: To understand the impact of team composition, diversity, and communication on team performance & to understand the role of motivation a managing organization. 4: To explore how organisational culture affects behavior, communication and decision making by enhancing creativity and innovation and giv how to cope with change and stress. 5: To Develop intercultural competence, including awareness, knowledge, and skills for effective communication, negotiation, and collaboratio SYLLABUS	e an episteme
Module-I	Fundamentals of OB & Understanding the Basic Framework of OB: Evolution of OB through Quality Management movement, Definitions, Scope & Importance of OB, Challenges (Diversity, Globalisation & Ethical Perspective) and opportunities for OB, models of OB, applying OB to solving problems.	6 Hrs
Module-II	Understanding the Determinants of Individual Behavior: Personality: Determinants of personality, Theories of Personality (Type &Psychoanalytic theory), MBTI, Big five personality traits and other major traits influence workplace behavior. Perception: Meaning, Perceptual Process, Application of Perception at Workplace. Motivation: Motivation Framework, Content theory (Maslow's need hierarchy & Hertzberg's two factors theory), Process theory (Adam's Equity & Vroom's Expectancy theory), Job Design And motivation, Importance of motivation at Workplace. Learning: Theories of learning (Classical Conditioning, Operant Conditioning, & Cognitive Theory), Principles of Learning. Bhavioral	
Module-III	modification through learning. Group & Team: Understanding Group and Team Behavior at Workplace: Group & Team: Defining and classifying groups, the five-stage model of group development Group properties: Roles, norms, status, size and cohesiveness, Group decision making. Group decision making. Leadership: Meaning, Definition & types of leadership, Traditional theories of leadership: Trait theories, Behavioral theories, Contingency theories, Contemporary approaches to leadership, importance of leader in organisations. Headership Headership	
Module-IV	Understanding Group and Team Behavior at Workplace: Organisational Culture: Meaning, Definition, Cultural dimensions, effect of Organisational culture Organisational Change & Development: Nature, Levels & types of Change, Change Agents: Resistance to Change, Force field theory of Change, Managing the Change.	
Module-V	Conflict & International Organisational Behavior: Managing Conflict and Negotiations: Meaning, views, & levels of Conflict, Process of conflict, Conflict resolution techniques. Transactional Analysis: Meaning, Importance of TA, Life position, Ego states And their encounters. IOB: Internationalisation of Business, Cultural differences and similarities, Understanding Interpersonal behavior across culture through Hofstede's Cultural Dimensions	
Essential Reading	 "Organizational Behavior: Text, Cases, & Games" by K. Aswathappa .Publisher: Himalaya Publishing House "Essentials of Organizational Behavior" by Stephen P. Robbins and Timothy A. Judge. Publisher: Pearson Education. 	
Supplementary Reading	 "Organizational Behavior: Improving Performance and Commitment in the Workplace" by Jason A. Colquitt, Jeffery A. LePine, and Michae Publisher: McGraw-Hill Education. "Organizational Behavior: Human Behavior at Work" by John W. Newstrom and Keith Davis. Publisher: McGraw-Hill Education. "Organizational Behavior: An Evidence-Based Approach" by Fred Luthans. Publisher: McGraw-Hill Education. "Organizational Behavior: Emerging Knowledge, Global Reality" by Steven L. McShane and Mary Ann Von Glinow. Publisher: McGraw-F5. "Organizational Behavior: Theory, Research, and Practice" by John R. Schermerhorn Jr., James G. Hunt, and Richard N. Osborn. Publisher: 	Hill Education.

Course Outcomes	 CO1. Explain the importance of organizational behavior in improving individual and organizational effectiveness with Ethical practices. CO2. Evaluate the effectiveness of different leadership styles and their application in different situations. CO3.Develop critical thinking, Creativity& Innovation, problem-solving, and communication skills necessary for success in organisational settings. CO4. Develop strategies for managing organisational change effectively and maintainingsustainability. CO5. Apply organistional behavior concepts and theories to practical organisational situations. 		
	SESSIONAL		
Subject Code	PE1281	Total Contact Hour	16
Semester Subject Name	3 rd Thermal &Fluid Engineering Laboratory	Total Credit	1.5
Subject Name	List of Experiments		
1	Study of IC engines (cut model)		
2	To draw the valve timing diagram of IC Engines.		
3	Performance characteristics of multi-cylinder engine (Morse Test)		
4 5	Study of power Transmission system.		
6	Determination of metacentric height of a floating object. Determination of flow rate using orifice meter/ Rota meter.		
7	Determination of flow rate using orifice meter/ Rota meter.		
8	Study of a hydraulic test rig.		
Course Outcomes	At the end of this course, students will demonstrate the ability to CO1. Show wears characteristics of various materials. CO2. Interpret different principles and operations of IC engine. CO3. Make use of power transmission system. CO4. Analyze the methods to enhance the properties of the material from heat treatment process. CO5. Test the structure-property relationships of various materials.		
	SESSIONAL		
Subject Code	PE1282	Total Contact Hour	16
Semester	3 rd	Total Credit	1.5
Subject Name	Material Testing Laboratory		
1	List of Experiments		
1 2	Determination of the tensile properties of a given sample. Determination of the compressive strength of a given specimen.		
3	To perform three point bend test on a given sample.		
4	To perform three point only det on a given sample.		
5	Effect of work hardening on tensile properties of metal.		
6	Determination of hardness of the given specimen.		
7 8	Fatigue test of a given specimen. Impact test on the given sample.		
Course Outcomes	At the end of this course, students will demonstrate the ability to CO1 Evaluate the tensile properties of mild steel specimen. CO2 Evaluate the flexural strength and modulus of a given material. CO3 Evaluate the hardness and compressive strength of a given material. CO4 Evaluate the fatigue strength of a given material CO5 Evaluate the impact strength of a given material.		
Subject Code	SESSIONAL PE1283	Total Contact Hour	12
Semester	3rd	Total Credit	1.5
Subject Name	Computer Aided Machine Drawing		
	List of Experiments		
1	Introduction to CAD		
2 3	Interactive graphics for Generation of polyhedron, cylinder, sphere, cone etc. 3D viewing and transformation, hidden surface removal.		
4	Generation of curves and surfaces; Geometric modelling		
5	Preparation of product assembly details.		
6	Aggregation for assembly.		
Course Outcomes	At the end of this course, students will demonstrate the ability to CO1 Describe the fundamentals of Computer Aided Design. CO2 Use interactive graphic for generation of basic features. CO3 Generate geometric modelling, curves and surfaces using the CAD software. CO4 Create Assemblies for different product. CO5 Apply Computer Aided Design to solve engineering problems.		
	SESSIONAL		
Subject Code	CS1284	Total Contact Hour	20
Semester	3rd	Total Credit	1.5
Subject Name	Programming in Python Laboratory		
Course Objectives	1: Introduction to Python Language and its features. 2: To understand the concept of Python Program using sequence data and Control statements. 3: To be able to understand and create User Defined Function. 4: To understand the concept of OOPs and its implementation. 5: To understand the concept of strings and file handling List of Experiments		
1	Program on basics of python Programming Language.		
2	Program on basic Data Structures in Python.		
3	Program on Conversion from on data type to another.		

4	Dur man an Européana in Deckan	
5	Program on Functions in Python. Program using Object Oriented Programming in Python.	
6	Program using Inheritance in Python.	
7	Program using String in Python.	
8	Program using Regular expression in Python.	
9	Program using File Handling in Python.	
10	Program using basics of Pandas and Matplotlib module in Python.	
	CO1: Understand the Python Language and its features.	
	CO2: Apply sequence data and control statements to solve problem	
Course Outcomes	CO3: Able to create user defined functions to solve problems.	
	CO4: Analyze the concept of OOPs and its implementation.	
	CO5: Create the python program using strings and files.	
	ATH OFMEOTED	
	4TH SEMESTER	
Subject Code	PE1204 Total Contact Hour	30
Semester	4th Total Credit	3
Subject Name Pre-requisites	Theory of Metal Cutting	
r re-requisites	Materials Engineering & Metallurgy To obtain domain knowledge on basic shapes of machine tools, mechanism of chip formation, force analysis in turning, thermodynamics of o	hin formation and
Course Objective	tool wear criteria.	mp formation and
	SYLLABUS	
	STELABUS	
	Basic shapes of machine tools, Geometry of cutting tools: Classification of cutting tools, Wedge action, Function of different angles of	
Module-I	cutting tools, tool point reference systems, tool nomenclatures in ASA, ORS systems, tool signature, Geometry of twist drill & slab milling cutter.	7 Hrs
	Tool materials and their applications: Characteristics of tool materials, developments cutting tool materials, types of tool materials – carbon	
	tool steels, high speed steels, cast alloys, cemented carbides, ceramics, diamonds, CBN, recommended cutting speeds for the above tools.	
M. J. J. H	Orthogonal and oblique cutting, Mechanism of chip formation: Mode of failure under stress- fracture & yielding mechanism. Types of	
Module-II	chips, Factors involved in chip formation, shear plane, determination of shear plane angle, Kronenberg's shear angle relation, effect of cutting variable on chip reduction coefficient, Chip formation in drilling and milling.	5 Hrs
	curring variable on emp rediction coefficient, emp formation in drining and mining.	
	Mechanics of metal cutting: Forces on the chips, forces in orthogonal cutting, Merchant circle diagram and analysis, Velocity relationship,	
	Stress & shear strain in conventional shear plane, Power & Energy consumption in cutting process, Ernst & Merchant angle relationship, Lee & Shaffer principle.	
Module-III	Measurement of Cutting Forces: Reasons for measuring cutting forces, Dynamometers for Machine Tools, Classification of cutting force	6 Hrs
	dynamometers,Dynamometers for turning, drilling, and milling.	
	Thermodynamics of chip formation: The shear plane temperature-interface temperature from dimensional analysis-Experimental	
	determination of chip tool interface temperature. Cutting fluids: Theory of cutting fluid action at the chip tool interface, techniques for	
Module-IV	application of cutting fluids, types of cutting fluids, properties of cutting fluids, selection of cutting fluids, application of cutting fluids.	6 Hrs
	Tool wear & Tool life: Mechanisms of tool wear, crater wear, flank wear, causes and mechanism of tool failure, Taylor's tool life equation, Machinability & machinability index, effect of process parameters on tool life and machinability. Vibration and chatter in machining,	
	Economics of Machining.	
	Machine tools - Definition and classifications, Generation and machining principles. Setting and operations on machines (including major	6 Hrs
Module-V	units and specifications) Lathe Milling, Shaping, Slotting, Planing, Drilling, Boring, Broaching, Grinding (cylindrical, Surface, Centreless).	
	 Metal cutting Theory & Practice- A. Bhattacharya, C.B. Publisher Textbook of Production Engineering by Jain and Chitale. PHI Publication 	
	 A course in workshop technology" Vol-II (Machine Tool)- B.S. Raghuwanshi. Dhanpat Rai & Co. 	
Essential Reading		
Supplementary	1. Fundamentals of Metals machining & machine Tools- Boothroyd- InternationalEdition	
Supplementary Reading	2. Theory of Metal cutting- M.C. Shaw	
ð	At the end of the course, the student will able to:	
	CO1 Analyze and demonstrate the basics of metal cutting and machine tool operations.	
	CO2 Develop the theoretical derivation of equations for temperature, strain, force in metal cutting.	
Course Outcomes	CO3 Summarize the theory of metal cutting and compute cutting forces involved from Merchant's circle.	
	CO4 Apply the various cooling-lubrication methods for controlling the cutting temperature.	
	CO5 Demonstrate the application of appropriate machining processes and conditions for different metals.	
Subject Code	PE1205 Total Contact Hour	30
Semester	4 th Total Credit	30
Subject Name	4 Theory of Machines	~
Pre-requisites	Engineering Mechanics	
Course Objective	To obtain domain knowledge on various mechanism involved in a machine	
	SYLLABUS	Contact Hours
Module-I	Mechanism: Basic Kinematic concepts and definitions, mechanism, link, kinematic pair, classification of kinematic pairs, degree of	7 Hrs
	freedom, kinematic chain, binary ternary and quaternary joints and links, degrees of freedom for plane mechanism, Grubler's equation,	
<u> </u>	inversion of mechanism, four bar chains and their inversions, single slider crank chain, double slider crank chain and their inversion.	
Module-II	Velocity and acceleration Analysis of plane mechanism: Velocity of a point on a link by relative velocity method and instantaneous center	7 Hrs
	method. Acceleration of a point on a link. Acceleration in the slider crank mechanism.	

	Friction of a screw and nut, square threaded crew, V-threaded screw, pivot and collar bearings, friction circle, fricti	on axis, friction clutches,	
Module-III	transmission of power by single plate, multiple and cone clutches.		6 Hrs
	Gear trains: simple train, compound train, reverted train, epicyclic train and their application.		
Module-IV	Toothed gears: Theory of shape and action of tooth properties methods of generation of standard Tooth profiles, Standard proportions, Interference and Under-cutting, methods of Eliminating Interference, Minimum numbers of teeth to avoid interference.		5 Hrs
Module-V	Governors: Centrifugal Governors-Watt and Porter Governors, Spring loaded Governor- Hartnell Governor, sensiti Isochronism, Hunting, Governor effort and power, curves of controlling force.		5 Hrs
Essential Reading	 Theory of machines – S. S. Ratan, Tata McGraw Hill. Mechanism and Machine Theory- Rao and Dukkipati, Wiley Eastern Ltd 		
Supplementary Reading	 A Textbook of theory of machines (in S.I units) – R.S Khurmi& J.K. Gupta, S Chand Publication. Theory of Machines – Thomas Bevan, TMH. 		
Course Outcomes	At the end of the course, the student will able to: CO1 Implement and design various types of linkage mechanisms for obtaining specific motion and analyze them for CO2 Analyze the velocity and acceleration of a plane mechanism. CO3 Evaluate and estimate the power of screw and clutches. CO4 Analyze and evaluate the speed ratios of gears and gear trains. CO5 Analyze and evaluate the effort and power of governor.	or optimal functioning.	
Subject Code	CH1206	Total Contact Hour	30
Semester	4 th	Total Credit	3
Subject Name	Inspection & Metrology	•	•
Course Objective	To obtain domain knowledge on basics of metrology, comparators, surface measurements, gear measureme	nt and non-destructive t	esting
course objective	To obtain domain knowledge on basics of metrology, comparators, surface measurements, gear measureme	it and non destructive	
	SYLLABUS		Contact Hours
Module-I	Introduction to metrology: Definition, Need of Inspection, Process of measurement, Precision and accuracy, Errors standard, end standard. Limits, fits and tolerances: Limits, Tolerances, Terminology for Limits and Fits, Types of Fits, Allowances, Hole & Interchangeability, selective assembly, Gauges and Gauge Design; Limit gauges; Snap, plug, ring, Taylor's princip	t shaft basis system,	5 Hrs
Module-II	Comparators: Characteristics, Relative Advantages of various types of comparators; Mechanical, Optical, Pneumatic, Fluid displacement type Linear measurement: Rules, Callipers, Height gauges, Micrometers, Depth gauge, Dial indicator, slip gaugesAngular measurement: Sine bar, Sine center, angle gauges, Autocollimator. Form measurement: straightness, flatness, roundness, runout and cylindricity		7 Hrs
Module-III	Surface Measurements: Roughness and waviness, Surface texture, cut off length, RMS & CLA values, Surface roughness measurement by contact (using Taylor Hobson's Talysurf) and non-contact methods. Interferometry: Introduction, optical flat, Interferometers Type.		8 Hrs
Module-IV	Metrology of screw thread: Errors in threads, Measurement of element of threads, 2-wire &3- wire methods, best wire size. Gear Measurement: Gear Terminology, Measurement of error, Tooth Thickness Measurement; Gear tooth Caliper, Base Tangent Comparator, Constant Chord Method, Measurement using Rollers.		5 Hrs
Module-V	Non-destructive Testing- X-ray examination, radiography, Ultrasonic inspection, magnetic test, machine vision system-principle, application, Laser inspection.		5 Hrs
Essential Reading	1. Engineering Metrology- R.K. Jain 2. Production Technology- P.C. Sharma		
Supplementary Reading	 Engineering Dimensional Metrology- Miller, Edward Arnold publications Precision Engineering in Metrology- R.L. Murty, New Age Int. 		
Course Outcomes	 CO1 Analyze the fundamental concepts in measurement methods and techniques. CO2 Apply the uses of various gauges and comparators. CO3 Implement the application of surface roughness measuring instruments in practical domain. CO4 Incorporate appropriate method and instruments for inspection of various gear elements and thread elements. CO4 Apply various non-destructive techniques for inspection. 		
Subject Code	PE1207	Total Contact Hour	30
Semester	4th	Total Credit	3
Subject Name	Manufacturing Technology-I		
Pre-requisites	Basic Manufacturing Processes		
Course Objective	To obtain knowledge on casting, welding, forming, powder metallurgy and coating processes and their appl	ications.	
v	SYLLABUS		Contact Hours
Module-I	Fundamentals of metal casting: Overview of casting; heating & pouring; solidification & cooling. Metal casting processes: sand casting; other expandable mold casting processes; permanent mold casting processes; foundry practice; casting quality; metals for casting; product design consideration.		7 Hrs
Module-II	Fundamentals of welding: overview of welding technology; weld joint; physics of welding; features of fusion welded joint. Welding Processes: Arc welding; resistance welding; oxyfuel gas welding; fusion welding; solid state welding; weld quality; weldability; design consideration in welding. Brazing; soldering; adhesive bonding.		8 Hrs

	1		
Module-III	Fundamentals of metal forming: Overview of metal forming; material behavior in metal forming; temperature in metal forming; strain rate sensitivity; friction & lubrication in metal forming. Bulk deformation processes in metal working: Rolling; forging; open-die forging; impression-die forging; closed die forging;; Extrusion: types of extrusion; analysis of extrusion; dies and presses for extrusion; defects in extruded products. Wire and Bar drawing: analysis of wire drawing.		6 Hrs
Module-IV	Sheet metal working: cutting operation; bending operation; other sheet metal forming operation. Powder metallurgy engineering powders; conventional pressing and sintering; alternative pressing and sintering techniques; materials at metallurgy. Shaping processes for polymer matrix composites: materials for PMCs; open mold processes; closed m	nd products for powder old processes.	6 Hrs
Module-V	Coating and deposition processes: plating and related processes; conversion coatings; physical and chemical vapor deposition, organic coatings; proclaim enameling; thermal and mechanical coating processes.		3 Hrs
Essential Reading	I. Fundamentals of modern manufacturing- Mikell P. Groover, Wiley India Ed. Z. Manufacturing Technology (Vol. I)- P.N.Rao,TMH S. Welding Engineering and Technology- R.S. Parmar, Khanna publisher		L
Supplementary Reading	1. Metallurgy of Welding Technology-D. Seferian, Chapman & Hall 2. Principle of Metal Casting- P.L.Jain,TMH		
Course Outcomes	At the end of the course, the student will able to: CO1 Apply the knowledge to demonstrate casting processes and applications. CO2 Apply the knowledge to demonstrate welding processes and applications. CO3 Apply the knowledge to demonstrate forming processes and applications. CO4 Apply the knowledge to demonstrate powder metallurgy process and sheet metal operations. CO5 Apply the knowledge to demonstrate coating and deposition processes and applications.		
Subject Code	CS1209	Total Contact Hour	3
Subject Code Semester	4th	Total Contact Hour	30
Subject Name	Artificial Intelligence and Machine Learning		
Pre-requisites			
Course Objective	 the various subfields of AI& ML. 2.Students will have a clear understanding of the fundamental concepts and terminology of Artificial intelligence& and comprehend AI-related topics. 3. Students will have a clear understanding about neural networks, Fuzzy logic. 4. Students will have a clear understanding about Clustering and related techniques. 5. Students will have a clear understanding about Classification and related techniques. 	Machine learning, enablir	g them to discuss
	SYLLABUS		Contact Hours
Module-I	Introduction to Artificial Intelligence, Applications of AI, State-space problem, Problem solving by Intelligent search Deepening Search, Hill climbing, Heuristic search: A*, AO*, MIN_MAX Algorithm, Alpha-beta cutoff	h: BFE, DFS, Iterative	8 Hrs
Module-II	Knowledge representation and reasoning: Formalized symbolic logic, propositional logic, First-order predicate logi clausal form, inference rules, resolution principle.		5 Hrs
Module-III	Unsupervised Learning: K-means, K-Medoids, Hierarchical clustering, Density based clustering, Validation Method validation.		5 Hrs
Module-IV	Supervised Learning: Decision Tree, Naïve Bayes classifier, K-NN, Introduction to regression. Performance matrix Precision, Recall, Sensitivity, Specificity, MAE, MSE		6 Hrs
Module-V	Neural Network Artificial Neuron and its model, activation functions, Neural network architecture: single layer and networks, recurrent networks, Training of ANN, Back propagation, RBFNN.	multilayer feed forward	6 Hrs
Essential Reading	1.E.Rich and K. Knight, Artificial Intelligence-TMH 2.Neuro Fuzzy and Soft Computing, J. S. R. JANG, C.T. Sun, E. Mitzutani, PHI		
Supplementary Reading	 Artificial Intelligence, Dan W Patterson, Prentice Hall of India Computational Intelligence Principles, Techniques and Applications, Amit Konar, Springer publication. M. Gopal, Applied Machine Learning, McGraw Hill Education, 2018 		
Course Outcomes	CO1:Understand the basics of Search techniques, Knowledge representation and reasoning in Artificial Intelligence CO2:Understand the Supervised machine learning and Unsupervised machine learning. CO3:Analyzevarious machine learning models. CO4:Implement various Supervised machine learning techniques and analyze them. CO5:Implement various Unsupervised machine learning techniques and analyze them.		
Subject Code Semester	HS1201 4th	Total Contact Hour Total Credit	30
Subject Name	Engineering Economics	rotai Cituit	
Module-I	SYLLABUS Basic Principles of Economics: Definition, Nature, Scope and significance of economics for Engineers. Demand of Determinants, Elasticity-Government policies and application. Basic Macro economics concept: National income are		Contact Hours 6 Hrs
Module-II	 (GDP/GNP/NI/Disposable Income etc) and identities for both closed and open economics concept. National income accounting (GDP/GNP/NI/Disposable Income etc) and identities for both closed and open economies. Utility Analysis: Cardinal and ordinal measurability of utility, Assumptions of cardinal utility analysis, law of diminishing marginal utility, Consumer's equilibrium: Principle of equi-marginal utility; Indifference curve-Concepts, properties, Budget line, Equilibrium of the consumer, Revealed preference hypothesis, Individual choice under Risk and Uncertainty: St. Petersburg paradox and Bernoulli's hypothesis, Neumann-Morgenstern method of constructing utility index, Friedman-Savage hypothesis 		6 Hrs

Module-III	Production, Cost and Market Structure: Production function: short run production function and law of variable proportion; Long run production function: Isoquants, isocost line, returns to scale, Optimum factor combinations, Cost Analysis: Concepts, Classification- Short run and Long run cost curves, Analytical and accounting cost concepts; Market structure: Market classifications, Perfect competition: Characteristics, price and output determination in Short run and long run, Monopoly market: Price and output determination, price discrimination Modern theories of firms: Baumol's theory of sales revenue maximisation, Bain's limit pricing model.	6 Hrs	
Module-IV	Money and Banking: Money-Function of Money, Demand for Money Theory. Quantity theory of money; Banking: Commercial Banks and their Functions, Central bank's Functions. Role of the Banks in Economic Development, Monetary and Fiscal Policy Tools and their impact on the economy.		
Module-V	Capital Budgeting and Investment Analysis: Time value of money: use of cash flow diagram, Annual economic worth, present worth, future worth, Internal Rate of Return (IRR), Net Present Value (NPV), Payback period method, Analysis of public projects: Cost-Benefit analysis, Cost effectiveness		
Essential Reading	 Koutsoyiannis, A. (1979). Modern Microeconomics. The Macmillan Press Ltd., London Pindyck, R. S., D. N. Rubinfeld and P. L. Meheta (2009). Microeconomics, Pearson India, New Delhi Panneerselvam, R. (2007). Engineering Economics, Prentice-Hall of India, New Delhi Mankiw Gregory N. (2002). Principles of Economics, Thomson Asia 		
Course Outcomes	CO1- Utilise economics principles in consumption process CO2- Describe the utility measurement and measure the utility associated with risk CO3- Efficient use of resources in production and take decision regarding optimum output CO4- Describe market mechanism and analyse product market to take proper decisions CO5- Implement economic principles in company related decision making		
	SESSIONAL		
Subject Code	PE1204 Total Contact Hour	16	
Semester	4 th Total Credit	1.5	
Subject Name	Metal Cutting Laboratory		
	List of Experiments		
1	To analyse the morphology and types of chips produced in turning operation at different cutting conditions.		
2	To observe and compare the types and characteristics of chips produced during metal cutting of different materials.		
3	To determine the effect of cutting parameters (speed, feed, depth of cut) on surface finish in turning operation.		
4	To measure the cutting forces during turning operation using lathe tool dynamometer.		
5	To measure the cutting forces during drilling operation using drill tool dynamometer.		
6	To analyse the vibrations during machining operations and analyse its relationship with cutting parameters.		
7	To measure the temperature generated during machining using infrared camera.		
8	To analyze the effect of cutting parameters on temperature generated at the cutting zone.		
Course Outcomes	CO1 Obtain hands-on experience with machining equipment, learning to set up and conduct experiments, collect data, and analyze results. CO2 Demonstrate the understanding of chip formation mechanism in machining. CO3 Measure the different cutting forces in turning, drilling and milling operations. CO4 Evaluate the tool vibration and chatter formation on machined surface in cutting operation. CO5 Understand the significance of temperature in the cutting process, learning to measure and analyze the thermal effects on tools and workpr	vieces.	